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Abstract Halting the loss of biodiversity comes along with the need to quantify biodi-

versity composition and dynamics at large spatial and temporal scales. Highly

standardized, international monitoring networks would be ideal, but they do not exist yet. If

we are to assess changes in biodiversity now, combining output available from ongoing

monitoring initiatives is the only option. However, integration of biodiversity information

across schemes is still very poorly developed. In this paper, we outline practical issues to

be considered when planning to combine existing monitoring information. First, we pro-

vide an overview of avenues for integration along the four dimensions that characterize a

monitoring design: sample size, biological coverage, spatial coverage and temporal cov-

erage. We also emphasize that complementarity in monitoring targets across schemes
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Naturelle, 55 Rue Buffon, 75005 Paris, France
e-mail: julliard@mnhn.fr

J. Clobert � D. S. Schmeller
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enables to describe complex processes of biodiversity dynamics, e.g. through relating

species traits to the impacts of environmental changes. Second, we review some methods

to overcome differences in designs among monitoring schemes, such as site selection, post-

stratification and measurement error. Finally, we point out some commonly used statistical

methods that are at hand for combining data or parameter estimates. We especially

emphasize the possible levels of data integration (raw data, parameter estimates, or effect

size estimates), and the largely under-exploited potential of meta-analysis methods and

weighted analyses. This contribution aims to bolster the practice and use of integration of

ongoing monitoring initiatives for biodiversity assessment.

Keywords Biodiversity indicator � Biodiversity monitoring � Biodiversity assessment �
Conservation � Global change � Meta-analysis � Sampling design � Temporal trend �
2010 target

Introduction

Facing the scientific consensus about the general decline of biodiversity (Balmford et al.

2003, 2005a, b; European Environment Agency 2007), policy makers have launched

several international initiatives with the goal to halt, or at least to decrease, the pace of

biodiversity loss due to human activities (Balmford et al. 2005b; Green et al. 2005; Henle

and Schmeller submitted—this volume). To assess success and progress of these initiatives

requires monitoring, i.e. the quantification of the composition and dynamics of biodiversity

at large spatial and temporal scales (Balmford et al. 2005b). Several syntheses provide

helpful guidance for planning and implementing biodiversity monitoring (e.g. Elzinga et al.

2001; Yoccoz et al. 2001; Parr et al. 2002; Margurran 2004; Buckland et al. 2005; Green

et al. 2005; Nichols and Williams 2006; Teder et al. 2007; European Environment Agency

2007). On this basis, information on the states and trends of single species or single

communities are widely available. However these separate, spatially restricted, single

trajectories are not directly indicative of general trends of biodiversity (Balmford et al.

2003; Mace 2005; Pereira and Cooper 2006). For this conversion, there is a need to

integrate single trajectories into indicators of biodiversity components over large spatial
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and temporal scales (Balmford et al. 2003; Buckland et al. 2005; Green et al. 2005;

European Environment Agency 2007). The integration of biodiversity monitoring is thus

an essential step in the progress towards a unified, appropriately scaled, adaptive man-

agement of biodiversity (Parr et al. 2002; Nichols and Williams 2006).

Increased integration should benefit all parties interested in biodiversity monitoring.

Researchers analyzing biodiversity changes access and understand increased levels of

complexity. Their conclusions, and therefore, the summary statistics they produce for

environmental policy making, have an increased predictive power and an increased range of

inference (e.g. Nichols and Williams 2006). Policy makers benefit from more general and

more robust recommendations, that apply at more relevant, extended geographical and

temporal scales (e.g. Côté et al. 2005; Balmford et al. 2005b; Donald et al. 2007; European

Environment Agency 2007). Integration also provides environmental managers with

assessments of the general impact of their management actions (Caughley and Gunn, 1996;

Sutherland et al. 2004; e.g. Devictor et al. 2007b; Stoner et al. 2007). Finally, individuals

and organizations engaged in monitoring benefit from an increased awareness about, and

legitimacy of, their activity with a better recognition of their role as major data providers for

biodiversity assessment (e.g. Pereira and Cooper 2006; Danielsen et al. 2005; Schmeller

et al. submitted). Overall, although the different parties may not be interested in the same

end-products, the monitoring integration process benefits each of them. The exemplary case

of bird monitoring integration illustrates how one integration initiative benefit all interested

parties. Researchers gained a better comprehension of determinants of population and

community trends (e.g. DeSante et al. 1999; Thomas et al. 2004; Devictor et al. 2007a),

which yielded robust, easily understandable indicators of the impact of several human

activities on biodiversity (Gregory et al. 2005; European Environment Agency 2007; e.g.

fragmentation: Devictor et al. 2008; European Common Agricultural Policy: Donald et al.

2006; international conservation policies: Donald et al. 2007). The same monitoring data

were also used for assessing the impact of management activities (e.g. Devictor et al.

2007b). In addition, the monitoring activities constituted formidable opportunities to

increase the awareness of the civil society about biodiversity changes (Couvet et al. 2008;

Bell et al. in press). To make the present paper useful for all these parties, we focussed on

two common issues: ‘why’ and ‘how’ biodiversity information should be integrated.

To achieve integration, top-down and bottom-up approaches can be considered. A top-

down approach is based on highly standardized, international monitoring networks. This

approach can be illustrated by some large-scale, integrated environmental monitoring

programs (Olsen et al. 1999; Parr et al. 2002). Benefits of such highly coordinated net-

works have been outlined in recent reviews (Balmford et al. 2003; Pereira and Cooper

2006; Teder et al. 2007). We emphasize two benefits here: top-down projects are one

solution to fill gaps in data availability for important but under-monitored taxa, regions

and/or ecosystems (Green et al. 2005); and top-down projects may also be suitable for

optimizing sampling effort (Nichols and Williams 2006).

However, top-down, global networks do not exist, and they are still to be designed and

implemented, what poses formidable logistic, administrative, financial and governance

challenges. Hence, bottom-up approaches, such as combining available ongoing monitoring

schemes, are the only realistic option to assess the global state and trend of biodiversity now

and in the coming years (Balmford et al. 2005a, b; Danielsen et al. 2005). Not surprisingly, the

few existing national or international biodiversity monitoring programs rely on bottom-up

integration of ongoing monitoring schemes. This is also the strategy chosen by several

research groups that are engaged in the production of biodiversity indicators (Balmford et al.

2005a; Olsen et al. 1999; European Environment Agency 2007; van Swaay et al. in press).

Biodivers Conserv (2008) 17:3357–3382 3359

123



Likewise, the reporting phase of the EU Habitats Directive (Article 17, Council of the

European Communities 1992) is a top-down, legal approach but the reporting itself is a

bottom-up integration of ongoing monitoring in the Member States. The scientific value and

political usefulness of this integration process will greatly depend on the understanding of the

potentials and limitations of integration of similar and dissimilar monitoring schemes.

Despite its importance, integration of information across existing biodiversity monitoring

schemes is still very poorly developed (Parr et al. 2002; Lengyel et al. in press a). According to

the EuMon databases on monitoring practices in Europe (EuMon consortium 2006; Henle and

Schmeller submitted—this volume; see also Lengyel et al. in press a; Schmeller et al. sub-

mitted), only 23 out of 547 monitoring schemes assemble data at an international or EU level.

We suspect that the lack of international funding for species monitoring (e.g. EU funds are the

main support for only 2.3% of schemes in Europe; EuMon consortium 2006), the reluctance

of institutions to share data, and the diversity of approaches participates in discouraging large-

scale integration of monitoring output. In addition, biodiversity monitoring schemes were

launched for very different objectives, and with restricted geographical scopes, likely due to

the lack of a unified and international vision of environmental policy in the past. Regardless of

their differences, most biodiversity monitoring schemes contain a common core framework:

they collect measures of biodiversity components for defined units of space and time

(Buckland et al. 2005; Teder et al. 2007). This core framework can and should be the basis for

integration, using meta-analysis tools designed for this purpose (Côté et al. 2005). Combining

monitoring output across initiatives may compensate for the three main weaknesses of

ongoing biodiversity monitoring (Mace 2005; Pereira and Cooper 2006), which are: (1)

fragmentary biological and spatial coverage, (2) no direct compatibility of data sets among

initiatives, and (3) insufficient integration of biodiversity monitoring.

When integrating monitoring output from different schemes, two sources of information

are sought for: similarities and complementarities among schemes. If different taxa,

countries, or habitats exhibit a similar response to the same environmental change, then

similarity among schemes indicates that researchers can make strong inferences on bio-

diversity state and trend. The common message is also clear what satisfies the need of

simplicity for policy making. To the contrary, if biodiversity responses differ in intensity or

in direction across, schemes, taxa, or habitats, the different schemes carry complementary

information. By the identification of these major differences, researchers gain access to a

higher level of understanding of the processes responsible for the changes. This also means

that policy makers are informed of important determinants of biodiversity change that they

may not want to ignore for their policies to be effective and efficient. From a statistical

perspective, similarities are additive effects that explain an important part of the total

variation. These additive effects can be the effects of time or of habitats. Complementa-

rities are to be considered when an important part of the total variation is explained by

interaction terms between additive effects. For instance, if an important part of the vari-

ation is explained by the interaction between the effects of time and habitats, that means

that biodiversity changed differently in the different habitat. Actually, that is the message

brought to policy makers by researchers working with the European Bird Indicator: over all

bird species, abundance tended to be stable through time, but temporal trends strongly

differed across habitats, with alarming declines in farmlands (Gregory et al. 2005). Last but

not least, complementarity is also sought for when combining schemes that document

different processes for a same biological component. Distribution changes can be extracted

from information-poor but cheap data, such as presence-absence. But combination with

information-rich and expensive data, such as demographic studies, is needed to identify the

processes responsible for these distribution changes.
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In this paper, we review and illustrate the information gained by biodiversity monitoring

integration, and corresponding statistical tools. We also identify practical issues to be con-

sidered when combining existing monitoring schemes. With this contribution, we hope to

help the practice of biodiversity monitoring and promote data integration. The better our

capacity to integrate monitoring output, the better the assessment of states and trends of

biodiversity, and thus the better the basis for conservation policies. We focus primarily on

species monitoring and general methodological issues, whereas integration of habitat mon-

itoring is developed by Lengyel et al. (in press b). The present paper comprises three sections

addressing (i) the benefits of integrating information among monitoring schemes, (ii) the

integration of monitoring schemes with different sampling designs, and (iii) commonly used

statistical methods for integration of monitoring data. The latter section is presented to make

clear what tools are at hand to implement the suggested integration pathways.

The benefits of integration: improving biodiversity coverage

The most obvious benefit of integrating existing information from separate monitoring

schemes is an increase in the number of biodiversity components that are under survey.

Coverage increase can progress along each of four dimensions: (i) the ability of monitoring

to detect trends (statistical power), (ii) the biological components and mechanisms

determining the states and trends of biodiversity, (iii) space and (iv) time.

Precision of estimates and statistical power

Precision of an estimate depends on the sample size (the number of sampling units available

for estimation) and the natural variation of the measured parameter in time and space (i.e.

variation within or among years, variation among populations or among habitats). The ability

of monitoring to detect a change as significant (e.g. statistical power for the test of the effect of

time) is a function of the precision of the estimate. Hence, to increase the chances of detecting

significant sources of variation in biodiversity, one wants to maximize sample size. Thus,

combining information from different monitoring schemes is a straightforward way to

increase sample size, precision of estimates, and, eventually, statistical power, without

increasing sampling effort per scheme. For instance, Hochachka et al. (2000) compared count

data collected opportunistically by several observers with precise estimates of population

size. They concluded that variability in population size was correctly retrieved with oppor-

tunistic data, and that the increase in sample size due to the use of all available data

outweighed the cost of high among-observer variation. We can expect that the same con-

clusions would hold when combining data among monitoring schemes.

Biological coverage

In this section, we consider integration at increasing levels of biological data heterogeneity,

starting from combining similar data on similar species and ending with combining output

of species and habitat monitoring schemes.

A single biological process for a single (set of) species

The first, intuitive avenue for integration is to combine monitoring schemes that document

the same biological process (e.g. survival rate, population size) for the same (set of)
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species. The benefits are increased precision (cf. previous section) but also increased

generality of monitoring conclusions. Such an approach yielded, for instance, the first

global evaluation of amphibian population trends, combining data from 936 populations of

157 species (Houlahan et al. 2001). At least within Europe, there is a large potential for

such integration, with many schemes collecting the same data types on the same taxonomic

groups (Fig. 1) or the same habitats (Lengyel et al. in press b).

The biological processes documented by monitoring schemes are largely determined by

the type of the data collected. In species monitoring, four main data types are used (Fig. 1):

presence/absence, counts (of individuals or species, including vegetation coverage), indi-

vidual follow-up (capture-mark-recapture data), and measures of individual traits (e.g. age,

size, state of individuals). Even if different monitoring schemes collect different data types,

they still can be reduced to their smallest common denominator to document the same

biological process, e.g. presence-absence data for geographic distribution or counts for

population trend. Integration in this way extracts the information common to all moni-

toring schemes. Virtually all existing schemes could be combined in this way (Fig. 1). The

browser available at the EuMon consortium (2006)’s website allows the identification of

schemes that could be combined per species, taxonomic group, or habitat in Europe.

Different biological processes for a single (set of) species

When different monitoring schemes collect different data types for a same (set of) species,

they contain information on different biological processes. A goal of integration is to

structure the complementarity among these biological processes to gain a more subtle and

operational characterization of biodiversity change. Consider the case of changes in

population size. Most data can be used to analyze and estimate trends in population size

(Strayer 1999; Pollock 2006). However, only individual follow-up or age/size–structure
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Fig. 1 Proportions (and numbers) of monitoring schemes collecting a given data type per taxonomic group
in Europe (species database, EuMon consortium 2006). Scheme coordinators were asked to indicate only the
main data type per scheme. The group ‘Mixed’ contains schemes that monitor more than one taxonomic
group; ‘Counts of individuals’ includes plant densities. This figure gives a quantitative overview of the
potential for integration of monitoring schemes collecting similar and complementary information within-
and across-taxonomic groups
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dynamics contain the necessary information to explain the observed population trends in

terms of demographic mechanisms. Such an integration approach was adopted to identify

the demographic processes (survival versus recruitment) driving population trends in four

common birds in France (Julliard 2004; see also DeSante et al. 1999). The identification of

the driving process in turn is essential for the development of targeted management (e.g.

Pradel and Henry 2007). Statistical methods were recently developed to combine capture-

mark-recapture and count data to improve the analysis of population trends (e.g. Besbeas

and Freeman 2006; Gauthier et al. 2007; Pradel and Henry 2007). In Europe, a large

number of schemes collect time series of counts and capture-mark-recapture data for many

bird species, as well as for several large mammals, reptiles, amphibians, and fishes (Fig. 1),

underlining the great potential for more integration of monitoring data. Again, the online

browser of the EuMon’s database (EuMon consortium 2006) can be used to identify

schemes that collect complementary information at the species level.

If the biological target of monitoring exhibits phenological fluctuations, the within-year

temporal design should allow accounting for phenology in the analysis of among-year

changes (e.g. Menzel et al. 2006; Roy et al. 2007). At least 43% of European species mon-

itoring schemes have intra-annual replication in data collection (i.e. two or more monitoring

sessions per year; EuMon consortium 2006) and, therefore, could document phenology (e.g.

arrival of migrants, flowering). The combination of such schemes would greatly increase our

ability to quantify the assumed effects of climate change on species and biological com-

munities. Appropriately accounting for changes in phenology is an important step for

explaining and quantifying changes in distribution and population size of mobile or multi-

voltine organisms (cf. plants, invertebrates). To be suitable for this purpose, the temporal

design must secure that within-year distribution of replicated samples encompasses the part

of the year when phenological changes occur. For instance, in the case of monitoring set-

tlement of migrating animals on their breeding grounds, monitoring visits should be

distributed in time so that, over all monitored sites, data are collected before, during and after

arrival of migrants. van Strien et al. (2008) give useful guidance on how to design an analysis

of phenological change with monitoring data. For schemes without within-year replication,

the problem is that true among-year variation of the measure (e.g. abundance) may be

confounded by annual changes in phenology. In the context of integration, data from ‘phe-

nology’ schemes should be used to assess the robustness of temporal trends derived from

schemes that cannot account for phenological variation. Methods should be developed to

allow the joint analysis of schemes with and without within-year replicated sampling.

A single biological process for different (sets of) species and taxonomic groups

Multi-species trends are usually obtained by combining single-species trends across spe-

cies (e.g. Gregory et al. 2005). The resulting estimates has a broader biodiversity coverage

than single-species approaches (as well as some other advantages; Balmford et al. 2005b;

Mace 2005). The simplest method for combination is to consider that all species are equal,

regardless of their characteristics (e.g. ecological function, life history traits), and to

compute the mean.

When among-species heterogeneity is high, across-species integration can provided

valuable information due to the complementarity among species traits: which set of species

tells us what (Kati et al. 2004; Thomas et al. 2004)? Biodiversity indicators focussing on

habitats (e.g. Gregory et al. 2005; van Swaay et al. in press), habitat specialization

(e.g. Henle et al. 2004, Devictor et al. 2007a), functional traits (e.g. Elzinga et al. 2001;
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Statzner et al. 2001; Dziock et al. 2006), trophic levels (e.g. Pauly and Watson 2005), or

any other species traits (e.g. Dolédec et al. 1999; Henle et al. 2004; Pavoine et al. 2005) are

designed to gain information from these differences among species. The main limitation

when combining data from different species or taxonomic groups is the lack of scientific/

theoretical knowledge to interpret the resulting composite biodiversity indices (Buckland

et al. 2005; Green et al. 2005; Nichols and Williams 2006). For instance, the Living Planet

Index (Loh et al. 2005) combines all available data into a single index, whatever realms,

habitats and life-history traits of the groups are. The index is thus easy to define, but its

biological meaning can be questioned. Another approach is to rely on a theoretical

framework that formally links different taxonomic groups (e.g. Marine Trophic Index

relying on explicit trophic networks; Pauly and Watson 2005). For terrestrial ecosystems,

such a theory-based integration framework is still largely lacking (but see Pettorelli et al.

2005).

Integrating monitoring according to causes of change

An intuitive goal when combining monitoring datasets is to search for a common response

across species or taxonomic groups to a given cause of environmental change (e.g. pol-

lution, land-use, climate change, invasive species, Table 1; Elzinga et al. 2001; Henle et al.

2004, 2008; Balmford et al. 2005a; Gregory et al. 2005; but see limits of the approach in

Nichols and Williams 2006). There is a great potential for integration per cause of change

since 85% of species (Table 1) and habitat (Lengyel et al. in press a) monitoring schemes

in Europe claim to document at least one possible cause.

The first benefit of integration per cause of change is to increase the robustness of

conclusions on the causes of biodiversity change, and their respective intensity. Meta-

analysis tools are specifically developed to derive such conclusions about the average

effect of, e.g. climate change or habitat fragmentation, from independent, small-scale

correlative tests with monitoring data (Côté et al. 2005).

The second benefit of integration per cause of change comes from testing for differences

among species, and among taxonomic groups, in their response to one same cause of

Table 1 Proportions of species monitoring schemes documenting a given cause of change per taxonomic
group in Europe (species database, EuMon consortium 2006)

Taxonomic group Land
use

Fragmentation Climate
change

Pollution Invasive
species

Nb. schemes

Birds 0.79 0.28 0.48 0.31 0.19 95

Mammals 0.83 0.58 0.15 0.13 0.10 48

Reptiles, amphibians,
& fishes

0.88 0.67 0.33 0.55 0.55 33

Butterflies 0.82 0.57 0.57 0.14 0.14 28

Other invertebrates 0.78 0.41 0.41 0.52 0.33 27

Plants 0.82 0.48 0.27 0.34 0.39 44

Fungi & lichens 0.57 0.29 0.57 0.86 0.14 7

Several taxonomic groups 0.89 0.70 0.33 0.26 0.33 27

Nb. schemes 228 146 107 92 72 309

These figures give a quantitative overview of the potential for within- and among-taxonomic group inte-
gration per cause of change. Scheme coordinators could declare more than one cause of change per scheme
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change. Understanding these differences should increase the robustness of biodiversity

assessment conclusions, and the adequacy of corresponding management policies. Moni-

toring and among species differences have been successfully used to develop predictors of

birds sensitivity to habitat loss and fragmentation (Henle et al. 2004). Another example is

the combination of monitoring time series on butterflies and birds. Butterflies are shorter-

lived and more specialized than birds. They are therefore expected to react more rapidly

and at smaller spatial scales, whereas the longer-lived and less specialized birds would

react more smoothly and at a broader spatial scale (Thomas 1995, 2005). Hence, butterflies

would document finer-grained changes, whereas birds would integrate changes over larger

spatial and temporal scales. An integrated monitoring of birds and butterflies would thus

provide a complementary understanding of biodiversity changes (e.g. Thomas et al. 2004;

see Kati et al. 2004 for a similar recommendation for conservation purposes). In an

extreme case, species from different taxonomic groups could even behave more similarly

than species from the same taxa. For instance, generalist birds and butterflies may respond

similarly to some environmental changes, whereas specialists could exhibit different

responses (e.g. review by Henle et al. 2004 for fragmentation response of generalists and

specialists).

The third benefit of integration is to challenge observational, correlative results about

causes of change from surveillance monitoring (sensu Nichols and Williams 2006) with

results from monitoring schemes using an appropriate experimental design. Theoretically,

only monitoring schemes with well-planned, experimental designs can demonstrate that a

given cause of change actually explains the temporal or spatial trends observed (Nichols

and Williams 2006). However, surveillance monitoring data is the only source of material

available for evaluating large-scale changes in biodiversity, identifying putative causes of

change, and measuring the intensity of these changes at the relevant spatial scale through

post-hoc correlative evidence. In Europe, a large part of schemes lack any experimental

design (72% of species schemes, 48% of habitat schemes; EuMon consortium 2006). When

different areas are monitored, with some areas affected and others not affected by the

change, correlative comparisons can come close to an experimental design (e.g. different

forms of land use; Henle 2005). Combining monitoring schemes with and without

experimental designs would benefit each type of monitoring: experiment-based monitoring

would gain in spatial and temporal range of inference (external validity), whereas cor-

relative-based monitoring would gain in inferential power about the role of underlying

causes of change.

Integrating species and habitat monitoring

Monitoring of biodiversity is needed both at the level of species and habitats (Balmford

et al. 2003, 2005a; Lengyel et al. in press a; habitat being also called environment, Teder

et al. 2007). Habitat monitoring is the monitoring of habitat characteristics, with habitats

defined as distinguishable and repeatable assemblages of species (see Lengyel et al. in

press a). Thus, an integration of species monitoring and habitat monitoring has a high

potential to provide a better insight in biodiversity changes. On the one hand, the states and

trends of habitats provide information on the potential states and trends of their constitutive

species. For example, if the coverage of a habitat is reduced by 10% per year, species

depending on this habitat may be expected to also decrease by at least 10% per year. On the

other hand, since habitats are most often defined as assemblages of plant species, species

monitoring will be informative on the states and trends of habitats. Evaluations of the
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number of species lost through deforestation are based on this rationale (Hughes et al.

1997). Obviously, these approaches are rather crude, and they can be refined with eco-

logical data if available (e.g. adjustment for density–area relationship, transitory increase

of density in remaining habitat fragments, habitat specialization per species). Since several

environmental policies rely on the assumed tight relationship between species and habitats,

and use them for assessing their conservation status (e.g. Habitats Directives, Council of

the European Communities 1992), integration of species and habitat monitoring schemes

are essential for the evaluation of these policies. Actually, this integration effort has been

requested by the European Commission to the Member States for the production of

national reports on states and trends of Habitats Directive species (Article 17, Council of

the European Communities 1992). As an additional example of the benefits of integrating

habitat and species monitoring, Devictor et al. (2008) combined a standardized, European-

scale geo-referenced database of habitats (CORINE Landcover) and breeding bird survey

data, providing the first large-scale empirical evidence of the positive relationship between

landscape disturbance and homogenization of bird communities.

Spatial coverage

Integration of existing monitoring schemes through space has three main benefits: (i) it

increases spatial coverage without increasing sampling effort, (ii) it secures that spatial

variation in biodiversity components can be accounted for, and (iii) it facilitates directing

new monitoring schemes to areas not yet covered.

Monitoring schemes often have a moderate spatial coverage. In Europe, 52% of species

schemes (Fig. 2) and 55% of habitat schemes (Lengyel et al. in press a) are restricted to a

small area or a region within a country. The federation of local, regional and national

monitoring schemes is an efficient way of increasing spatial coverage without increasing

monitoring effort. The EU Bird Indicators are based on such an integration of national
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monitoring schemes (Gregory et al. 2005; European Environment Agency 2007). The EU

Butterfly Indicators are being developed with the same integrated structure, also including

regional schemes when national monitoring is lacking (European Environment Agency

2007; van Swaay et al. in press).

State and trends of biodiversity vary through space. Thus, extrapolation of measures

from one localized monitoring scheme to a wider area may often not be warranted. A better

practice is to rely on integration of monitoring output through interpolation across different

monitored regions. This rationale is included in the construction of most Red Lists of

species. A great advantage of spatial interpolation from existing monitoring schemes is to

allow biodiversity estimation even for areas not monitored (e.g. Jiguet et al. 2005). The

predicted values for these areas come along with estimates of their precision, i.e. of their

reliability. Local environmental authorities then benefit of robust estimates of states and

trends of biodiversity for all the areas under their responsibility, even those not monitored.

However, beyond a certain distance, data from one site are useless to predict biodiversity at

another site. This distance, i.e. the limit between interpolation and extrapolation, is the

maximum distance at which the measured biodiversity component is spatially autocorre-

lated. In this situation, new monitoring sites (or schemes) are needed to fill monitoring

gaps.

Even in the presence of spatial variation of biodiversity, policy makers may need a

single indicator value for large regions that may contain several monitoring schemes. If

sampling design and weighting issues are appropriately handled, the estimate of the global

indicator should provide an unbiased assessment of biodiversity. In addition to the global

picture, decision makers may need a finer-grained indicator to adjust local management

recommendations to local conditions. In this case, the average indicator should be spatially

disaggregated to identify areas of homogenous trend within the area of interest. From a

statistical perspective, areas with contrasted temporal trends will be identified by signifi-

cant interactions between the effects of time and of space (e.g. time * sites, or

time * regions, or time * schemes; Fig. 3). This concept can be illustrated with climate

warming in temperate regions. Spring arousal occurred earlier in recent warmer years, but

this effect was stronger at northern than at southern latitudes (Menzel et al. 2006). Spatial

disaggregation may also be considered at the habitat level. The European Bird Indicator

can be computed over all species, but distinguishing trends per major habitat types

revealed that the major concern was for farmland and grassland species (Gregory et al.

2005).

Spatial integration also stimulates the launching of new monitoring schemes in regions

or countries that are not covered so far. Such new monitoring schemes have the possibility

of benefiting from the experience of network partners. The federation of existing butterfly

monitoring schemes had such a positive effect on the launching of new schemes (van

Swaay et al. in press). From a logistical perspective, this is particularly helpful for iden-

tifying the monitoring design that makes the best compromise between local constraints

and biodiversity monitoring goals (Yoccoz et al. 2003; Green et al. 2005; Schmeller et al.

submitted).

Temporal coverage

Integrating different existing initiatives allows increasing temporal coverage. Similar field

monitoring techniques have been used for decades. In Europe, at least 17 schemes have

been running for more than 40 years, and two schemes even for more than one century
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(EuMon consortium 2006). Thus, by using similar monitoring data, monitoring assessment

could go back far into the past by integrating data from old, abandoned monitoring

schemes with ongoing and starting schemes (e.g. Loh et al. 2005).

Surveys are often not implemented with the same inter-annual frequency. Although this

rises technical problems (see Section ‘‘Temporal design and missing data’’), a benefit of

having different time frequencies is to obtain complementary insights on the temporal

patterns of the biological component of interest. Long-term monitoring with low survey

frequency (i.e. wide temporal gaps) allows picking up long-term trends, while short-term

monitoring with high temporal frequency (e.g. annual) allows picking up faster changes in

population size. This is particularly critical when monitoring species with cyclic population

dynamics (e.g. Krebs and Berteaux 2006).
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Fig. 3 Temporal trend analysis in the presence of missing data and differences of average value among
schemes. (a) Two schemes, A (open dots) and B (filled dots), counted individuals from 1997 to 2005. To
circumvent the problems of missing counts in some years (e.g. year 2000 for Scheme A), as well as the
problem of systematic differences in relative abundance among schemes (cf. difference in means, indicated
by dotted lines), the combined dataset can be analyzed with a log-linear regression model (i.e. generalized
linear model with Poisson error structure for the dependent variable and a log link-function; Buckland et al.
2005), with the number of individuals counted as dependent variable, and the effects of year and scheme
identity as additive explanatory variables. (b) Including a scheme effect accounts for systematic differences
among schemes in relative abundance. The inclusion of the year effect is similar to averaging counts
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average temporal trend in relative abundance can be estimated by including a linear effect of years in the
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scale should be logarithmic (Buckland et al. 2005)
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Integration of monitoring schemes with different sampling designs

Setting clear goals for monitoring defines what biodiversity components should be mon-

itored at which spatial and temporal scales (Elzinga et al. 2001; Yoccoz et al. 2001; Parr

et al. 2002; Green et al. 2005; Teder et al. 2007). The choice of the sampling design then

defines how samples are to be distributed in space and time to fulfil the monitoring goals. If

the sampling design is not well planned, it can strongly impair the strength of the con-

clusions derived from monitoring data (Yoccoz et al. 2001; Balmford et al. 2003; Buckland

et al. 2005). Combining information from schemes with different sampling designs is a

way to partly compensate for potential defects in the design of some schemes. We consider

here solutions to overcome or to make advantage of differences among schemes in three

major components of sampling designs: (i) accurately accounting for spatial variation (cf.

the methods to choose sites to be monitored), (ii) handling of missing data in time series,

and (iii) measurement error. The interest of combining schemes with and without control

samples (i.e. experimental designs) has already been addressed in the section ‘‘Integrating

monitoring according to causes of change’’.

Spatial variation and choice of sampling sites

All monitoring schemes using site selection methods that secure an objective representation of

spatial variation can be combined without any correction. This concerns the schemes where all

sites are monitored (exhaustive monitoring), or where the subset of sites to be monitored is

chosen randomly or systematically. However, the prevailing practice is to choose sites freely or

according to expert knowledge (58% of schemes in Europe; EuMon consortium 2006). Since

criteria underlying these choices are subjective and undefined, these monitored sites may

provide a biased documentation of the monitored area. This problem is pointed out as one major

weakness even for some widely recognized, long-term monitoring schemes (e.g. Buckland et al.

2005). In this situation, data have to be transformed a posteriori (or weighted, named post-

stratification) so that the estimates and conclusions derived from the data provide a represen-

tation as unbiased as possible of the biodiversity change at the spatial and temporal scales of

interest (see part on weights for ‘‘Different ranges of inference’’).

Stratification of sample collection is another method to optimize sampling effort

according to specific monitoring goals while maintaining unbiased site selection. Strati-

fication is similar to giving different weights at the design step. Stratification is used, for

instance, when some habitats, regions, or species need to be sampled with a higher, but

known and quantified, effort (e.g. Green et al. 2005; Henle et al. 2006). This is particularly

the case for rare or localized species that are usually badly covered by fully systematic or

random sampling designs. It is often preferred to stratify a priori the field effort among

habitat types, and to monitor with a higher effort sites where the species is likely to occur.

Integration of monitoring schemes with different stratification designs needs then to apply

the inverse stratification when analyzing combined data. For instance, when computing the

average estimate, if one habitat type was sampled twice more than others, data from this

habitat type should be given a weight of 0.5, whereas others should be given a weight of 1.

Temporal design and missing data

When integrating different existing initiatives, the temporal design usually differs among

monitoring schemes: their activities did not start or will not end in the same years, and
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surveys are not implemented with the same inter-annual frequency (EuMon consortium

2006). A similar problem arises in ‘adaptive monitoring’, i.e. when new monitoring needs

are identified while the monitoring is ongoing (e.g. Nichols and Williams 2006), or when

defaults of the monitoring design need to be corrected for (e.g. Buckland et al. 2005). The

dilemma is then whether to change the protocol, which will introduce heterogeneity in the

monitoring design within the time series, or to keep using a suboptimal design but consis-

tently through time. In Europe, 14% of species and habitat monitoring schemes declare to

have implemented major modifications of their monitoring protocol after the monitoring had

started (EuMon consortium 2006). The need to account for discontinuity in the time series is

one of the important difficulties when integrating monitoring data (Balmford et al. 2003).

A solution to compensate for incomplete time series is to use statistical models that

account for missing data (Olsen et al. 1999; Buckland et al. 2005; Gregory et al. 2005; but

see Houlahan et al. 2001). Generalized linear models, with appropriate selection of data

distribution, link-function and parameterization of the effects of schemes and year,

intrinsically account for heterogeneity among schemes and through time (Fig. 3). For

instance, for the EU Bird Indicators, counts of birds are analyzed with a log-linear model,

which allows to estimate trends despite missing data (Gregory et al. 2005; van Swaay et al.

in press; see Fig. 3). Note that interpolating values for missing data does not change

estimates of the indicator or of the temporal trend.

When only a few different protocols are to be combined, another solution is to calibrate

data among protocols from portions of the time series when two or more protocols were

applied simultaneously within the same geographical area (e.g. the British Trust for

Ornithology, Buckland et al. 2005; crocodile monitoring in Northern Australia, Webb et al.

1990).

Accounting for measurement error

The measurement error quantifies the range of statistical validity of the measure. The

sampling design should allow taking into account this uncertainty of the measure when

inferences are made from the data. When measurement error cannot be estimated in some

of the datasets to be combined, a solution is to include independent estimates of this error

in the statistical model for the joint analysis. Such methods are still under development

(e.g. Hooten et al. 2007).

A common source of measurement error in monitoring schemes based on counting

individuals (or species) is the fact that the observer cannot detect all individuals (or

species) present during monitoring visits. In other words, the detection probability is

usually lower than one. A specific sampling design based on repeated sampling needs to be

implemented so that monitoring data can be adjusted for fluctuations in detection proba-

bility. When integrating monitoring schemes with and without detection probability

design, two approaches can be followed. First, it is common practice to ignore detection

probability (e.g. Rosenstock et al. 2002; EuMon consortium 2006; Henry and Jarne 2007).

This practice may be reasonable if a pre-analysis showed that detection probability can be

considered constant trough space and time, or that variation is random and cannot generate

spurious trends. However, this may rarely be the case and the many possible sources of

variation in detection probability can critically confound the conclusions of monitoring

(e.g. Yoccoz et al. 2001; Buckland 2006; Henle et al. 2006; Kull et al. submitted—this

volume). Second, uncertainty in the measure can be systematically quantified by additional

information (e.g. extra field-work). If such post-hoc measures are not feasible (too
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technical or time consuming, Danielsen et al. 2005; but see Schmeller et al. submitted), a

solution is to incorporate independent estimates of the error in the joint analytical model.

Estimates of detection probability can be extracted from monitoring schemes with

appropriate sampling designs and incorporated in analyses of data from monitoring

schemes with inappropriate sampling designs (e.g. MacKenzie et al. 2005; Hooten et al.

2007; Schaub et al. 2007). More generally, Bayesian models provide a promising analytical

framework for such combinations of heterogeneous data, or the integration of extra-bio-

logical knowledge in the statistical analysis. Applications of these methods to monitoring

data are under development.

Statistical methods for integration

There are two main ways to integrate information from different monitoring schemes:

combining data or combining estimates. Combining raw data into a single dataset is possible

when data are compatible, i.e. when they are measured in the same unit (or can be reduced to

the same unit) and they quantify the same biological process (Table 2). When data types

differ but still document the same biodiversity indicator, a solution is to combine estimates of

the indicator across datasets. Two supplementary methodological issues are also considered

hereafter. Whatever the data to be integrated, if contributions to the global indicator should

not be equal among monitoring schemes, species, or regions (etc.), data or estimates need to

be weighted. Finally, when different monitoring datasets document a similar biodiversity

component, cross-validation could be used to assess the robustness of the conclusions.

Combining data

When the measurement unit is the same among different monitoring schemes, raw datasets

can be combined easily (Table 2). For simultaneous analysis with the same parametric

statistical model, data need to follow the same theoretical distribution. Then, combined

data can be jointly analyzed to produce an estimate averaged across all monitoring data in

regard to the parameter of interest. Summary statistics are straightforward to compute from

the integrated dataset. For instance, Julliard et al. (2004a) estimated national population

growth rates for bird species with a single model combining data from two separate

monitoring schemes, one counting individuals detected acoustically and the other counting

captured individuals. Although the numbers of individuals per sampling effort could not be

compared because counting techniques were different, data still followed a similar theo-

retical distribution (Poisson distribution) and documented the same biological parameter,

population growth rate (estimated by the slope for the linear effect of year; Fig. 3). Such

approaches provide access to parameter estimates across all datasets with a single analysis,

despite differences in sampling units and scales among monitoring schemes. When com-

bining heterogeneous data, the general model may not fit satisfactorily all data (cf.

overdispersion). In this case, it would not be warranted to combine all data into a single

analysis. Estimates of the population growth rate should be extracted separately from each

dataset and then combined with meta-analysis methods.

When the nature of the data collected differs among monitoring schemes, the simplest

method for data combination is to reduce the complexity of information to the lowest

common level (common denominator). For instance, if a set of individual follow-up,

counts of individuals, and presence-absence data is available (Fig. 1), the lowest com-

plexity level would be presence-absence (e.g. Roberts et al. 2007). Combining data in this
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way is rather straightforward. However, much of the original information and precision

contained in the data is lost (Strayer 1999). In this case, combining estimates instead of the

raw data would make a more optimal use of the information to be integrated (see following

section).

If data heterogeneity is so high that no common quantitative currency can be defined,

better than nothing is to synthesize the sparse, available information on states and trends

into standardized ratings. This is how the IUCN evaluates extinction risk status with the

help of standardized criteria assessed by independent experts (Miller et al. 2007). These

criteria are then used as raw data for biodiversity assessment (e.g. Butchart et al. 2005).

Combining estimates and meta-analysis

When different data types are collected, parameter estimates rather than original data can

be integrated. Estimates become the dependent variable in the joint analysis. The differ-

ence between analyzing raw data or estimates is that error of the measurement is usually

ignored for raw data. Raw data are analyzed as if they were known without error (i.e.

perfect measurement). To the contrary, measurement error for estimates is known; it is

measured by the standard error. Then, a proper analysis using estimates as dependent

variables should simultaneously account for estimates of the mean and of the standard

error. Estimates to be integrated can characterize state or trend of a biodiversity component

(Ŷ in Table 2), or the response of this state or trend to an external factor (ẑ in Table 2).

Combining estimates of dependent variables

When measurement units differ, information from each monitoring scheme can be sum-

marized as the estimate of a single biological parameter for each separate data set. Then,

integration is achieved by analyzing these estimates with a single statistical model. For

instance, trends in population size can be estimated both from counts of individuals per

unit of time or with presence-absence data (e.g. Strayer 1999; Pollock 2006). Both esti-

mates can be combined to obtain an integrated, average estimate of the population growth

rate. For example Julliard et al. (2004a) estimated population growth rates from different

data types (point counts versus numbers of individuals captured) for a large set of species.

Then, they tested with a single ANOVA model whether among-species variation in pop-

ulation growth rate could be explained by species traits, while accounting for differences of

estimate precision among species.

When producing summary statistics from combined estimates, the recommended method

is the geometric mean (instead of the arithmetic mean), i.e. averaging on a log-scale and

exponentiation of the average (Buckland et al. 2005). The formula for computing standard

errors for geometric means is provided in Appendix A of Gregory et al. (2005). An inter-

esting property of the geometric mean is that its temporal trend is invariant with respect to

the weights attributed to each monitoring scheme (or species; Buckland et al. 2005).

An illustrative study is the estimation of the average trend of breeding bird populations

per major habitat in Europe (Gregory et al. 2005). In 2000, up to 18 EU countries main-

tained a national breeding bird survey and counted individuals per species but with

different methods. Thus, data could not be combined into a single dataset from which

trends could be estimated. The integration procedure comprised three steps. First, each

country produced national estimates of population growth rate per year for each species.

Second, these estimates were combined with independent estimates of national population
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sizes to produce yearly estimates of the European population size, allowing the compu-

tation of population growth rates at the European level for each species, with missing data

accounted for by interpolation. Finally, species were attributed to broad habitat categories

based on expert knowledge, and estimates of population size changes were averaged across

species by the geometric mean to produce estimates of trend per habitat in Europe. For

several other groups, e.g. butterflies, but also raptors, large mammals, bats, beetles, a

number of schemes suitable for similar integrative analyses exist (EuMon consortium

2006), the integration of which would considerably improve our understanding of biodi-

versity conservation needs.

Combining estimates of the effect of explanatory variables

The idea behind meta-analysis is that results of independent studies are treated as input

units for the analysis of a general pattern (Gurevitch et al. 2001). Such an approach allows

combining information coming from various monitoring schemes regardless of the dif-

ferences in their sampling designs, objects monitored, data characteristics, and to some

extent even statistical methods applied. If statistical analyses applied on each separate

dataset included the same effect (the same independent variable), then the average effect

can be computed to infer the average pattern across all datasets (Table 2). Meta-analysis

methods use the effect-size concept to integrate estimates of effects across analyses (e.g.

Hedges and Olkin 1985; Cooper and Hedges 1994; Osenberg et al. 1999; Gurevitch et al.

2001). The effect size is a standardized estimate of the magnitude of the effect of an

explanatory variable. A common metric of effect size z is the estimate of the slope for the

explanatory variable, divided by the standard error of the slope estimate (see Osenberg

et al. 1999 for other metrics). Effect size is computed independently for each monitoring.

The mean effect size is then computed by summing effect size estimates from all moni-

toring schemes and dividing this sum by the square-root of the number of degrees of

freedom (i.e. number of monitoring schemes—1). If the supposed cause of change has an

effect, the mean effect size will depart from 0. Whatever the magnitude of the true effect in

each monitoring scheme, the expectation of the test statistic will be negative if there is a

general negative effect, or positive if there is a general positive effect. The statistical power

of the resulting meta-analysis will depend on the magnitude and precision of the effects in

the various monitoring, but power should be reasonable in the case of small to moderate

effects in all monitoring schemes. A meta-analysis has a good probability of detecting the

effect of the cause of change over all observations, which is not the case for separate tests

on each single dataset. Another important advantage of meta-analysis is the possibility to

identify different patterns of response across monitoring schemes with tests of homoge-

neity of effect size. This statistical framework allows estimating average trends across

monitoring schemes, as well as discriminating sets of regions with contrasted trends.

When only qualitative information is available for the tested effect or cause of change

(cf. significant positive, non-significant, significant negative; e.g. Parmesan and Yohe

2003), non-parametric tests can be used to identify whether the proposed cause of change

has, on average, a significant effect over all monitoring schemes (Cooper and Hedges

1994). As for any analytical method, meta-analysis cannot compensate for all defaults of

the data. For instance, they will not compensate for biases in data availability (cf. sampling

or publication biases, non-independence of data-points; e.g. Møller and Jennions 2001;

Côté et al. 2005). As for the design of monitoring schemes, the design of meta-analyses has

to be planned carefully to secure accurate contributions to biodiversity assessment.
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Given all these methodological possibilities, and their suitability for monitoring inte-

gration, it is surprising that meta-analysis methods remained so rarely used for biodiversity

assessment from monitoring data (Sutherland et al. 2004; Balmford et al. 2005a). Two

explanatory variables would be particularly good candidates for meta-analysis: the effects

of time, and of given causes of change. Nearly all monitoring schemes aim at testing for

temporal trends in the measured biodiversity component. The effect size for time would be

the very first candidate for the application of meta-analyses in the context of biodiversity

assessment. Two temporal effects can be analyzed: the unconstrained effect of years, or the

linear effect of years, i.e. the linear trend throughout the time series (Fig. 3b). Estimates of

the slopes for the linear effect of time can be combined among analyses to obtain the

averaged, global population growth rate, and to test for a global temporal trend. A good

example of meta-analysis of the effect of time is the assessment of the world-wide trend in

coral reef coverage (see Côté et al. 2005). Note that in the case of the analysis of linear

effect of time, an analysis of time effect estimates, weighted for estimate precisions, would

be similar to a meta-analysis of effect size estimates (Table 2).

The second important application of meta-analysis is the analysis of causes of envi-

ronmental change across monitoring datasets (Côté et al. 2005). Classical components of

the global change (Table 1) are documented by several tens of monitoring schemes in the

same and/or complementary taxonomic groups. For instance, coordinators of 27 bird

monitoring schemes, 28 mammal schemes and 16 butterfly schemes considered that they

could assess the effect of fragmentation with their monitoring data. Hence, there is a large

potential for coordinated analysis of independent datasets and meta-analysis of size effects

for widespread causes of change. Another good candidate for meta-analysis of monitoring

data is the study of climate change. The effect of climate warming is often tested for with

the effect of yearly temperatures. Since many different monitoring schemes use this same

explanatory variable in their analysis of time series, estimates of the effect size for the

yearly temperature can be combined across monitoring schemes. Combining all these

estimates into a single meta-analysis provides a robust, general test for the response to

yearly temperature, as an indicator of climate warming, across all datasets (Menzel et al.

2006). Other examples of explanatory variables used in meta-analysis of monitoring data

are common human-induced or natural disturbances (e.g. Pons et al. 2003; Côté et al.

2005).

Compensating for differences in biodiversity coverage and monitoring designs:

the use of weights

When combining information from different monitoring schemes, the issue of differences

in biodiversity coverage and monitoring designs among schemes arises (Balmford et al.

2005a; Buckland et al. 2005). Are all species, countries or estimates equally indicative of

biodiversity state or change? Should some have higher contributions to the global biodi-

versity index than others? The monitoring goals (should) answer these questions. Once

priorities are set, a common practice to implement these choices is to apply weights to the

data or estimates prior to statistical testing or averaging. Hereafter, we present some

standard weights used when combining biodiversity monitoring data. Weights have two

natures: weights that formally adjust for differences in precision, and weights that are used

to compensate for biased measures of the parameter of interest (e.g. over-/under-sampling)

or to intentionally bias the contribution of different data to an indicator (e.g. differences in

contribution among species, taxa, habitats). This second type of weights is a pragmatic
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response to an important need, but they have no methodological background. Standard

methods to simultaneously use these two types of weights (precision and bias) in a single

analysis remain to be proposed.

Different precisions of estimates

If estimates have different precisions (i.e. standard errors, SE), the weight to be used

should be the inverse of the squared standard error for each estimate (i.e. 1/(SE)2; e.g.

Julliard et al. 2004b). In this way, when testing for a temporal trend with estimates from

different monitoring schemes, differences in precision of trend estimates per scheme are

accounted for. A moderate but precisely estimated decline will contribute more to the

global estimate and to the test of a temporal trend than a very steep but largely imprecise

decline. If standard error estimates are not available, surrogates of precision, such as the

squared number of monitored sites, or the monitored area per scheme (Côté et al. 2005),

may be used as weights. Note that the size effect statistic z used in meta-analysis already

accounts for estimate precision.

Different geographical contributions

If population sizes differ across monitored geographical regions to be combined, a suitable

weight would be the proportion of the total population size held per region (e.g. Côté et al.

2005; van Swaay et al. in press). For instance, for the European Bird Indicators (Gregory

et al. 2005), weights are the percentage of the total European population size held per

country per species.

Different ranges of inference

For assessing states and trends for a species or a taxonomic group, it is important that all

inhabited habitats and/or biogeographic regions are accounted for. This is typically

achieved during the planning phase by selecting monitoring sites that provide an unbiased

coverage of habitat composition. However, if no sampling design is used, it is likely that

habitats will not be equally represented. To obtain an unbiased, average trend across all

regions, weights need to be applied to the data so that each habitat is represented according

to its actual surface area. For example, when producing national trends for butterfly

population sizes in the Netherlands (van Swaay et al. 2002), indices of population size per

monitored site were post-stratified according to habitat availability at the national scale.

Such a procedure was necessary because butterflies and transects were not equally dis-

tributed over the country and habitats.

Post-stratification is also to be used when a biodiversity component is known to vary

through space (which is likely to be true in most cases). Data from regions with contrasted

trends need to be appropriately weighted so that the overall estimate is an unbiased

combination of spatial variations in the trend (e.g. Olsen et al. 1999; Houlahan et al. 2001).

Different species/taxonomic groups

If different species or taxonomic groups are to be combined, several weighting rationales

can be considered. First, no weighting is used when biological knowledge of the rela-

tionship among species and taxa is insufficient (Buckland et al. 2005). In practice, the same

3376 Biodivers Conserv (2008) 17:3357–3382

123



weight is given to all species and taxonomic groups (e.g. Living Planet Index, Loh et al.

2005). Second, weights can be used to give priority to a given biological property, e.g.

degree of specialization, rarity, originality, ecosystem function, or trophic level (e.g.

Butchart et al. 2005; Pavoine et al. 2005), or to policy goals or conservation priorities

(Yoccoz et al. 2001; Nichols and Williams 2006; Miller et al. 2007; Schmeller et al. in

press a, b). These ad hoc weights are to be defined according to monitoring goals. The

analysis may also need to account for phylogenetic non-independence across monitored

species. The same response to a given environmental change from phylogenetically distant

species is more convincing about the general impact of the change than the same response

exhibited by closely related species (Helmus et al. 2007). Thus, comparisons among distant

species should be given a higher weight than comparisons between closely related species.

Several data transformations exist so that among-species comparisons are independent of

phylogenetic relationships (Harvey and Pagel 1991; Faith et al. 2004; Pavoine et al. 2005).

Another phylogenetic correction approach useful for relating species trends to environ-

mental changes is to compare pairs of closely related species but that have contrasting

ecological requirements or life-history traits (Møller and Birkhead 1992).

Cross-validation and robustness of conclusions

For a given dataset, at the end of the model selection (or effect selection in a stepwise

regression), there will always be one final model, i.e. the model that supposedly makes the

best compromise between good description of the data and parsimony (low number of

parameters). The final statistical model, or the dataset, however, may be of poor generality.

To evaluate the robustness of the conclusions, i.e. the external validity of the statistical

analysis, a method is to use cross-validation. Part of the data is used for identifying the best

statistical model, and the remaining part of the data is used to challenge this best model.

This process is repeated several times. Cross-correlation coefficients quantify the departure

between model predictions and observed data (Hastie et al. 2001). This approach has been

used for example to gain insights into the effects of hunting on mallard (Anas platy-
rhynchos) populations in the USA (Nichols and Hines 1983).

When integrating data from different monitoring schemes, several datasets are at hand.

The external validity of the model could be evaluated by computing cross-correlations

across the different datasets. For instance, Breeding Bird Survey data from one set of

countries could be used to parameterize the statistical model. Then, data from the

remaining countries could be used for challenging the final statistical model by cross-

correlation. This approach is particularly useful for assessing the robustness of spatial

interpolations of biodiversity measures. If cross-correlation coefficients are high, the

selected statistical model has a high predictive power, and it can also be concluded that the

same major effects apply in the different sub-datasets. In other words, biodiversity states or

trends are similar across schemes. At the opposite end, if cross-correlation coefficients are

low, it means that important causes of biodiversity variation (i.e. effects) are still missing

in the final statistical model.

Recommendations for future monitoring integration

From our overview and understanding of the monitoring practices, we suggest four pri-

orities for future integration of ongoing biodiversity monitoring. (i) The experience of bird

and butterfly monitoring (Gregory et al. 2005; European Environment Agency, 2007; van
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Swaay et al. in press) should be used to develop similar bottom-up, international, federative

monitoring programmes that produce indicators for other taxonomic groups. The number

of existing schemes (EuMon consortium 2006) suggests that most vertebrates groups

would be suitable, as well as several macro-invertebrates (e.g. beetles, Odonata, and

Orthoptera), and plants as a whole (with a possible group focussing on orchids). (ii) The

next integration step would be the production of indicators combining information from

different taxonomic groups, e.g. for trophic chains per ecosystems. Several monitoring

schemes already monitor different taxonomic groups simultaneously (Fig. 1). Land-use

and fragmentation are the first causes of biodiversity change that could be assessed with

such multi-taxa indicators (Table 1). Much research is still needed in this area for the

definition of scientifically sound and user-friendly indicators for terrestrial ecosystems. (iii)

Intellectual property and differences in sampling designs should no longer be a barrier to

data exchange. Better than nothing is to exchange meta-data, i.e. estimates derived per

scheme with standard statistical procedures. Finally, (iv) statistical tools (cf. meta-analysis

methods, interpolation models, models mixing different data sources, cross-validation)

should be further developed and fully enjoyed by biostatisticians implementing the inte-

gration of data from monitoring. Policy makers would benefit from more robust

conclusions, at more appropriate spatial and temporal scales.

Conclusion

Monitoring data in Europe are scattered and heterogeneous (EuMon consortium 2006; e.g.

Lengyel et al. in press a), but contain a massive amount of information on biodiversity

changes and drivers of these changes. This information would be much more valuable for

biodiversity assessment if it were more easily accessible, e.g. if assembled in meta-dat-

abases. We hope that this contribution will encourage researchers to develop biodiversity

monitoring integration across schemes, and policy makers to support and rely more on

output from integrated monitoring.
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